NYSolar Smart DG Hub – Resilient Solar Project June 10, 2015

NY Solar Smart DG Hub

Kate Anderson

Software and Hardware Working Group Co-Lead

National Renewable Energy Laboratory (NREL)

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Why Resilient Solar: Increasing Grid Disruptions

Source: Blackout: Extreme Weather, Climate Change and Power Outages. (Kenward & Raja 2014)

Economic Impact

- The economic impact of blackouts caused by natural disasters can be significantly higher than the cost of system repairs (Johnson 2005)
- Sustained weather-related outages cost communities \$18 billion - \$70 billion per year (Campbell 2012)
- Electricity losses associated with Hurricane Sandy (2012) resulted in \$27 billion - \$52 billion in economic losses

Falling PV and Storage Costs

Current State of Resilient PV

- Most PV systems installed today are technically incapable of providing consumer power during a grid outage
 - For safety reasons, current operating standards require that grid-connected solar PV systems automatically disconnect from the grid during a power outage
 - Most of these systems are not designed to function as both a grid-connected and a standalone system, and therefore completely cease power production during a system outage
 - In addition, most PV systems in place today are not coupled with batteries or an auxiliary power source (such as a diesel generator) to allow them to provide continuous power to a load
- If designed for both grid-connected and standalone operation, however, PV hybrid systems can provide power when the grid is down

Case Study: Midtown Community School

- During Hurricane Sandy in 2012, back up generator fuel supply was limited & fuel delivery was difficult due to size and impact of storm
- Midtown Community School in Bayonne NJ served as a community shelter as a result of its hybrid solar-diesel system
- 272 kW of PV installed with diesel generator and syncing inverters formed microgrid
- PV significantly cut amount of diesel needed to maintain electricity

Midtown Community School Source: SMA Inverted 2012

Case Study: Princeton University

 Princeton University's microgrid includes a natural gas cogen plant, 5 MW backup diesel generator, 5.4 MW of solar PV capacity, chillers, and thermal energy storage

Source: Princeton 2014

- Under normal circumstances, the microgrid is used for economic benefit to reduce peak demand and sell frequency regulation services into the RTO ancillary service market
- During Hurricane Sandy, operators disconnected the microgrid and successfully supplied critical power to the campus for 1.5 days, providing services to the community and avoiding millions of dollars of research-related losses

Case Study: Rutland, Vermont

- Rutland, VT has frequent storm-related power outages
- Rutland is constructing the country's first 100% solar-powered microgrid on a repurposed landfill
- Project includes 2.5 MW of solar capacity and 4 MW of battery storage (enough to supply 365 homes during normal weather conditions, or power the public shelter during emergencies)

- In addition to backup power, the storage will provide quick-responding frequency regulation services for the grid
- Developed by utility Green
 Mountain Power, with
 support from the
 Department of Energy and
 other partners

Source: Green Mountain Power 2014

Solar-Plus-Storage Potential

DG Hub Overview and Goals

DG Hub Structure

PROJECT TEAM

FDNY

Hardware Technologies Working Group

Software Technologies Working Group

Economics & Finance Working Group

> Policy & Legal Working Group

U.S DOF TSFC U.S. DOD/ MIT **GE Global Research Homeland Security IBM** Mayor's Office **City of Boston** NYSERDA **NY-BEST** NYC EDC EPRI NYC OEM SFPA GSA **SMA** Pataki-Cahill FEMA **Con Edison Demand Energy New York Power** SolarCity Authority **SunPower** LIPA **First Solar** NYC DOB **Princeton Power**

PARTNERS

Smart DG Hub Resilient Solar 3-Year Plan

Survey & Research

- Survey resilient PV costs: hardware, software, and balance-of-system
- Research barriers to a strong resilient PV market in NYC

Tools & Outreach

- Resilient PV Layer on Solar Map, Resilient PV Solar Calculator
- Installer workshops, code official trainings, webinars

Y3

Resources & Roadmap

- Fact sheets, ready-formarket technology guidelines, model guidelines for codes and permitting
- Smart DG Hub Roadmap for Resilient Solar

Resilience Calculator

Description	Goals
Year 1 Resilient PV Financial Incentive Matrix and Fact Sheet Matrix of existing and potential economic incentives for resilient PV	 Develop catalogue of all available incentive programs Easily digestible for broad audiences
Year 2 Calculator Component Recommendations Matrix leveraged to build inputs for public facing calculator Resilience Calculator Map Layer Public-facing financial calculator for solar+storage	 Create tool for developers, general public and stakeholders to see economic potential of systems Integrates into existing NYS Solar Map
Progress to Date	• WG refining matrix and fact sheet

Kate Anderson

Kate.Anderson@nrel.gov